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Abstract. A new, non perturbative, eikonal method called the “quasi abelian limit” (QAL) is suggested
for high energy quark (nucleon) scattering involving the exchange of all possible, non interacting, non
abelian gluons (mesons). With this method, those functional integrals defining, e.g., the exchange of color
cooordinates in quark–quark scattering, are replaced by a finite number of quadratures over a subset of
their coordinates. Mathematically, this procedure is not rigourous, because an unjustified interchange of
limits has been performed; physically, it corresponds to the observation that the non perturbative sum
over all color–moment fluctuations can vanish at arbitrarily high energies. The QAL generates a result
in agreement with a corrected, “contiguity” calculation, when the latter is summed over all perturbative
orders.

1 Introduction

Ordered exponentials (OEs) appear in Green’s functions,
and in the scattering amplitudes constructed from them,
in a natural and fundamental way, for both abelian and
non abelian interactions [1]. In the former situation, the
exchange of (soft) quanta, with 4–momenta considerably
less than those of the incident particles, removes the need
for ordering; while in the latter case the same kinemati-
cal (“eikonal”) regimes will still require ordering because
of the presence of isotopic (in SU(2)) or color (in SU(3))
degrees of freedom. Each scattering particle appears with
its own OE, and the amplitude constructed from the ex-
change of an arbitrary number of virtual mesons or glu-
ons requires the linkage of both OEs, an entity which can
be described as a “doubly–ordered” exponential. Because
of the complexity of such forms, a perturbative approach
has been the most common method of proceeding from
Lagrangian to scattering amplitude [2].

Recently, a functional approach called “contiguity” was
devised [3] to extract the leading–log(E) (LL) terms (of
the special subset of graphs corresponding to the exchange
of non–interacting mesons between scattering
fermions) in every order of perturbation theory for the
eikonal function, rather than for the amplitude; and this
method has also been applied in a special model which
deals with gluon–string exchange between a pair of scat-
tering quarks [4]. Because of the special form of the ef-
fective propagator found in [4], it became apparent that
there was another, and different way to perform not only
the contiguity identification of the relevant LL term, but
also to sum over all perturbative orders of those terms,
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in a direct and non perturbative calculation of the ampli-
tude in the limit of high energy; this was the origin of the
method there called quasi–abelian.

It was since been realized – and it will be displayed
in this paper – that a natural form of rescaled limit in
the high energy region may be applicable to any such non
abelian theory; and the second example to which it was
applied – the isotopic, SU(2) scattering amplitude of [3]
– gave an answer different from that obtained by sum-
ming over all the perturbative, contiguity contributions.
It was then discovered that an error had been made in the
course of the summations, such that the stated eikonal
of [3] does not, in fact, display “reggeized” energy and
impact parameter behavior; and that the corrected, con-
tiguity summations are compatible with the far simpler,
QAL calculation of the amplitude. Identification of the er-
ror made in [3], the general definition of the QAL, and its
use in calculating the amplitude, are the subjects of this
paper.

Our starting point is the exact, functional expression
for the scattering amplitude of a pair of quarks (each in a
different hadron), interacting via the exchange of all possi-
ble (interacting) gluons and closed quark loops. The only
initial approximation made is that one which defines the
word “ eikonal”, in which the quark momenta (p, p′) enter-
ing into the mass shell amputated quark Green’s functions
G[A] are treated as much larger than any of the Fourier
components k of the gluon fields A(k). This and only this
is what is meant by the words “eikonal approximation”. It
should be noted that we are treating the scattering quarks
as if they were asymptotic particles, suppressing the fact
that they are each to be considered as bound to a pair of
spectator quarks.
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We use techniques invented decades ago [1] to insure
time reversal invariance, calculating not the amplitude T ,
but rather its variation with respect to the quark–gluon
couplings, g1 and g2 of quark #1, qI and quark #2, qII
respectively:

T =
∫ g

0
dg1

∫ g

0
dg2

∂2T

∂g1∂g2

and performing the integrations over g1 and g2 at a later
stage.

At a convenient point in this process, we shall restrict
all gluon exchanges to those originating on one quark and
terminating on the other. Abelian experience has shown
that small momentum transfer limits of graphs
corresponding to “self linkage” along either line are not to
be taken seriously, except to generate “physical” masses
and couplings, which we shall call m and g, respectively,
suppressing any variation of the latter with respect to
momentum of its associated gluon; and we shall, without
apology, make the same assumption here, for this process
of small angle scattering, where s >> |t|. Gauge invariance
for the final, relatively simple subset of graphs evaluated
to illustrate the QAL, is discussed in Appendix B.

The amplitude so described is presumably very close to
the goal of many modern attempts now underway [5]. We
believe that the present effort, starting from first (func-
tional) principles of quantum field theory, is worth mak-
ing, and for several reasons. Firstly, it is appropriate to
develop any non perturbative approximations which sim-
plify the analysis, such as the QAL of the present paper.
Many older calculations [6] have discussed in perturba-
tive fashion estimates of relevant non–abelian amplitudes
which appear in this problem; we have the same objec-
tive, but wish to pursue the analysis in a non perturba-
tive, functional manner, developing the needed techniques
as we go along.

For the final, relatively simple subset of graphs that
we do estimate in this paper, our analysis differs from
that of the first two sets of papers quoted in ref [6], be-
cause we are not interested in the specifically IR limit as
the gluon mass vanishes, and also because we are here
neglecting “self–linkages” (generating t dependence which
damps the amplitude) included by these authors in their
search for IR singularities. A perturbative development of
the graphs that we do calculate brings in well–defined,
leading log factors of ln(E/m)[2], which can be summed
for values of x ' g ln(E/m) of the order of unity; but
instead of exponentiating, one finds a result of qualita-
tive form (1 + x)−1, which “self cancels” for large x and
removes the E dependence so carefully calculated in each
perturbative order. By adopting the QAL for these graphs,
one calculates from the outset a non perturbative set of
quadratures whose perturbative components are just the
original set of graphs without the ln(E/m) dependence
that has self canceled. In fact, this may be thought of as
a partial justification of an effective, 1/N expension, in
which certain, specific, non abelian structure is neglected.

In fact, such “self cancellation” can be seen in the ex-
plicit calculations of the Carruthers and Zachariasen pa-

per of ref [6], whose amplitudes vanish as E/m becomes
very large. This is necessary and appropriate for the anal-
ysis of IR singularities undertaken by these authors; but
suggests that in a non IR situation, the leading log terms
self cancel, requiring an investigation of the next to lead-
ing terms, and so forth. The QAL, in contrast and from
the beginning, drops these terms as irrelevant for the truly
important, leading log structure of the non IR amplitude,
which comes from very different graphs corresponding to
towers and their generalizations.

Secondly, even for abelian estimates, there are hon-
est differences of opinion as to the possible importance of
those contributions to the eikonal function which appear
when multi–t–channel, (“vertical”) gluons are exchanged
between the scattering quarks, with each such gluon ex-
changing all possible numbers of (“horizontal”) gluons be-
tween them. This is a most non trivial generalization of
the original “towers” of Cheng and Wu, and of Chang and
Yan, and many others [2], and was extensively discussed
two decades ago [7,8]. It is an old problem, which has not
been simplified by non abelian complications, and is one
that, it seems clear to us, can only be resolved by a non
perturbative, functional analysis. The present paper, be-
ginning with the “exact” eikonal amplitude immediately
below, and using relatively simple graphs to define the
QAL, sets the stage for other work ( presently underway)
towards this goal.

We begin, then, with the statement of the exact QCD
generating functional Z{j, η, η̄} as a functional of gluon
and quark sources, jaµ(z), η

b
α(x), η̄cβ(y), respectively, and

in an axial gauge specified by the constant 4–vector nµ:

Z{j, η, η̄}=N
∫
d[A] δ[n.A] e− i

4

∫
F 2

e L[A] e i
∫
η̄Gc[A]η (1.1)

where N is a normalization constant so chosen that
Z{0, 0, 0} = 1, F aµν = ∂µA

a
ν − ∂νA

a
µ + gfabcA

b
µA

c
ν , Gc[A]

defines the (potential theory) Green’s function of a quark
propagating in a background gluonic field Aaµ(x) and L[A]
represents the closed quark loop functional, L[A] =
−Tr ln

[
Gc[A]G−1

c [0]
]
.

Passing from generating functional to S–matrix ele-
ment in the standard way [8], but extended to quarks in
the s >> |t| limit, the mass shell amputated qq scattering
amplitude becomes:

∂2T

∂g1∂g2
= −ip1 · p2

m2

∫
d4z1 e

iq1·z1
∫
d4z2 e

iq2·z2 N

×
∫
d[A] δ[n ·A]e− i

4

∫
F 2+L[A]

×
(
e
ig1

∫ +∞
0

ds p′
1µ·Aa′

µ (z1−sp′
1)λ

I
a′

)
+

×λIa
(
e
ig1

∫ 0

−∞ ds p1µ·Aa′
µ (z1−sp1)λI

a′
)

+

×
(
e
ig2

∫ +∞
0

ds p′
2ν ·Ab

ν(z2−sp′
2)λ

II
b

)
+

×λIIa
(
e
ig2

∫ 0

−∞ ds p2ν ·Ab
ν(z2−sp2)λII

b

)
+

(1.2)
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where the λIa, λ
II
b are the Gell–Mann color matrices, and

p and p′ are the 4–momenta of incident and final quarks,
respectively; here q1 = p1 − p′

1, q2 = p2 − p′
2 and the in-

stantaneous position coordinates of qI and qII are denoted
by z1 and z2.

What must now be done is to convert the functional
operations of (1.2) into a form that can be explicitly eval-
uated.This we shall do by invoking the QAL, but in two
steps, the first of which exhibits the physical content of the
QAL by starting in Sect. 2 from the conventional eikonal
representation of a scattering amplitude given in terms of
an impact parameter sum over the eikonal function; while
the second step, in Appendix B, describes the QAL pas-
sage from (1.2) to the conventional eikonal representation,
(2.1) and (2.2). We emphasize, here as well as subsequently
in the text, that the great simplifications resulting from
the QAL do involve a mathematically non rigourous in-
terchange of limits. We suggest, however, that the terms
neglected by this interchange of limits, correspond to those
which display self–cancellation at very high energies; and
as such, the QAL becomes a sensible and convenient ap-
proximation method, with application far beyond the sim-
ple graphs employed in this paper.

2 Formulation

Corresponding to the sum of all possible virtual mesons/
gluons exchanged between a pair of fermions/quarks, we
write the generic form of an eikonal representation of the
(large energy/small momentum transfer) scattering am-
plitude as:

T (s, t) =
is

2m2

∫
d2b e iq.b

[
1 − e iχ(s,b)

]
(2.1)

with:

e iχ = eDI,II

(
e
ig

∫ +∞
−∞ ds1 p1·Aa

I (z1−s1p1)λI
a

)
+

×
(
e
ig

∫ +∞
−∞ ds2 p2·Ab

II(z2−s2p2)λII
b

)
+

∣∣∣∣∣
AI,II=0

(2.2)

where z1,2 and p1,2 are the incident configuration space
and 4–momentum coordinates of the interacting fermions
number 1 and 2, respectively ; here the linkage operator
is given by:

DI,II = −i
∫

δ

δAaIµ(u)
Dab
c, µν(u− w)

δ

δAbIIν(w)

and the propagator of the exchanged meson is denoted by
Dab
c, µν . The conventional scattering invariants are given

by s = −(p1 + p2)2 = 4E2, and t = −(p1 − p′
1)

2 = −q2,
m is (for simplicity) the same mass of fermion 1 and 2,
b = (z1 − z2)t is the impact parameter, with the subscript
t denoting the transverse (perpendicular to the incoming
fermion momenta) separation of the two fermions, each of
energy E, in their CM.

It should be emphasized that an integration over cou-
pling constants, here suppressed, must really be performed
before one can identify the RHS of (2.2) as e iχ; but, for our
purposes, (2.2) does express the qualitatively correct form
of that functional operation which represents the linkage
of a pair of fermions by the exchange of all numbers of
virtual mesons, and we shall refer to the logarithm of the
RHS of (2.2) as the “eikonal” of this problem. This ques-
tion, as well as a derivation of (2.1), and a demonstration
of gauge invariance, is discussed in Appendix B.

In order to perform the functional operation of (2.2),
each OE may be rewritten as a functional integration over
variables αa(s1), ua(s1) and βb(s2), vb(s2), whose effect is
to isolate the A–dependence of each OE in an ordinary
exponential; for example:

N ′
∫
d [α]

∫
d [u] e i

∫
dsαa(s)ua(s)

(
e i

∫
ds λI

a ua(s)
)

+

× e−ig
∫
ds p1·Aa

I (z1−sp1)αa(s) (2.3)

where all
∫
dsi integrations run over the same, infinite in-

terval as that of the original OE. The normalization N ′ is
defined such that the functional integral:

N ′
∫
d [α] e

i
∫
dsαa(s)

[
ua(s)−g p1·Aa

I (z1−sp1)
]

is the delta functional δ
[
ua(s) − g p1 ·AaI (z1 − sp1)

]
, and

the subsequent
∫
d [u] reproduces exactly the OE of (2.2).

If the interval
∫
ds is broken up into very small intervals

labelled by sk of width ∆s, where n factors of ∆s equal
the size of the integration range, then N ′ =

(
N ′
k

)n, where

N ′
k =

(
∆s/2π

)D (2.4)

and D is the number of dimensions over which each∫
dD [u(sk)] runs.

Of course, this separation does not solve the non
abelian problem, but only postpones the evaluation of the
OE of (2.3) until a later stage. The A dependence, how-
ever, is now effectively abelian, and the linkage operation
of (2.2) upon it can be performed exactly; and one easily
finds:

e iχ = N ′
∫
d [α]

∫
d [u] e i

∫
dsαa(s)ua(s)

(
e i

∫
ds λI

a ua(s)
)

+

×N ′
∫
d [β]

∫
d [v] e i

∫
ds βb(s)vb(s)

(
e i

∫
ds λII

b vb(s)
)

+
(2.5)

×eig
2
∫ ∫ +∞

−∞ ds1 ds2 p1 µ αa(s1)Dab
c, µν(z−s1p1+s2p2) p2 ν βb(s2)

where Dab
c, µν(z − s1p1 + s2p2) is the meson propagator,

and z = z1 − z2. Were this an abelian problem, the αa,
βb factors mulptiplying Dc would be replaced by unity, as
would be the remaining functional integrals of (2.5), and
the result would be the well known, abelian eikonal:

iχ = −i g
2

2π
γ(s)K0(µ b) (2.6)
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where γ(s) = (s − 2m2)(s(s − 4m2))−1/2 is that factor
depending on the spin of the exchanged boson, of mass µ.

The idea and mechanism of contiguity, as defined and
illustrated in [3], is not at question here; rather, the er-
ror made in that paper occurred when the “nested” LL
contributions to the perturbative eikonal of order g2n/n!
were multiplied by another term corresponding to the per-
mutation of all color indices of that order; and from the
latter term a factor of n! was omitted. The summation
over all n quoted was therefore of form exp (x), with x =
K ln(E/m),K = (g2/2π)K0(µb), rather than the geomet-
ric sum of form [1+x]−1, defined for |x| < 1, a sum which
must then be continued into the region of |x| > 1, and
which does not then display any net, LL behavior, in the
limit of arbitrarily high energy.

In effect, the LL(E) dependence “self cancels”, and
for this situation, it is difficult to have any confidence
in the idea of summing leading logs. Do the next–to–
leading logs also cancel ? The LL terms in perturbation
theory that lead to “exponentiation”, or “reggeization”,
are those associated with “towers” of closed quark loops
and/or gluon–gluon interactions, interactions which have
both been suppressed here. By the QAL analysis to fol-
low, we shall find that the absence of energy dependence
for this class of graphs is realized at an early stage, im-
mediately upon performing that limiting process which
defines the QAL method.

There are several methods of approach to the present
problem, each of which leads to the idea that the QAL
is intuitively reasonable at ultra–high energies. Consider
first the last line of the eikonal expression (2.5), which
in the limit of large energy and small momentum trans-
fer contains the CM 4–momenta p1 = (0, 0,+E; iE) and
p2 = (0, 0,−E; iE); and introduce the following rescaled,
proper–time variables s̄1 = E s1, s̄2 = E s2. This expo-
nential factor then becomes:

ig2
∫ ∫ +∞

−∞
ds̄1 ds̄2

p1µ

E
αa(

s̄1
E

)Dab
c, µν

×
(
z − s̄1(

p1

E
) + s̄2(

p2

E
)
)p2 ν

E
βb(

s̄2
E

) (2.7)

The ratios p1,2/E are independant of E, and the only vis-
ible, overt energy dependence of (2.7) is that of the ar-
guments of αa and βb. Imagine that a calculation – e.g.
contiguity – is now carried out using (2.7), and that at
the end of that calculation, the limit E → ∞ is taken. For
the case of gluon–string exchange (where the Dc above
is replaced by the Q of [4]), it has been shown that the
LL terms one finds correspond precisely to the limit that
follows from taking E → ∞ under the s1,2 integrals of
the equation which corresponds to (2.7). Here, that limit
would correspond to the replacement of (2.7) by:

ig2 αa(0)βb(0)
p1µ

E

p2 ν

E

×
∫ ∫ +∞

−∞
ds̄1 ds̄2D

ab
c, µν

(
z − s̄1(

p1

E
) + s̄2(

p2

E
)
)

or, by what is the same (re–rescaled) thing:

ig2 αa(0)βb(0) p1µ p2 ν

×
∫ ∫ +∞

−∞
ds1 ds2D

ab
c, µν

(
z − s1 p1 + s2 p2

)
(2.8)

in the limit of extremely large E.
This is one definition of the quasi–abelian limit, where

one imagines that the non perturbative result is correctly
described by (2.8); several other approaches, which have
the same QAL consequence, are gathered together in Ap-
pendix A. Mathematically, until one learns how to esti-
mate corrections to this limit, the procedure is surely an
unjustified interchange of limiting operations, for one is
supposed to calculate all functional integrals before allow-
ing E to become arbitrarily large. Physically, this inter-
change suggests that sums and averages over all param-
eters of color exchange will, at very high energies, occur
in the same way, and need be calculated just once – at
s1,2 = 0 – because not enough proper time is available
for fluctuations in the possible methods of color transfer;
one might say [9] that the sum of all “color moments” ef-
fectively vanishes as E → ∞. That is, regardless of the
space–time point along a quark’s trajectory where a vir-
tual gluon is emitted or absorbed, the variables describing
that color exchange are those associated with the quarks’
distance of closest approach.

3 Application

Immediately, one sees from (2.8) that all the leading
ln

(
E/m

)
dependence of this eikonal must cancel – as is the

case when the SU(2) contiguity forms are properly calcu-
lated and summed – because the s1,2 integrals of (2.8) are
just those leading to (2.6), which is independent of CM
energy in the limit

(
E/m

) → ∞. But of far greater signif-
icance is the observation that, if the limit is correct, the
only values of s1,2 which can enter into non trivial func-
tional integrals over αa, βb, ua, vb, are those of s1,2 = 0.
Breaking up these integrals into discrete integrations over
averaged variables carrying the values s1i, and s2j , inte-
gration over all the other s1i 6= 0 6= s2j intervals gives,
after extracting the proper parts of the normalization fac-
tors N ′, precisely a factor of unity. Each OE is replaced
by an un–ordered exponential factor depending on either
ua(0) or vb(0), e.g.:

(
e
i
∫ +∞

−∞ ds λa ua(s)
)

+
= e i∆s λan uan (s)

· · · e i∆s λa1 ua1 (s) · e i∆s λa ua(0)

· · · e i∆s λa−n
ua−n

(s)
∣∣∣∣ sn>···>s1>s0>s−1>···>s−n

sn→+∞,s−n→−∞

which gives:
(
e
i
∫ +∞

−∞ ds λa ua(s)
)

+
= e i∆s λa ua(0)

because the integrals
∫
dDα(s1i) and

∫
dDβ(s2j) for s1i 6=

0 6= s2j produce factors of δ
(
ua(s1i)

)
and δ

(
vb(s2j)

)
, so

that each OE reduces to the un–ordered form above.
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For SU(2), for simplicity, with the D of (2.4) chosen
as 3, what remains is the set of quadratures:

e iχ =
(∆s

2π

)6
∫
d3α(0)

∫
d3β(0)

∫
d3u(0) (3.1)

×
∫
d3v(0) e i∆s

[
αa(0)ua(0)+βb(0)vb(0)

]

×e i
2σ

I
a∆sua(0) · e i

2σ
II
b ∆svb(0) · e−iKαa(0)βa(0)

where K =
(
g2/2π

)
K0(µb), and we have chosen Dab

c, µν =
δabδµν∆c. A trivial change of variables: ∆sua(0) = ua,
∆svb(0) = vb, αa(0) = αa, βb(0) = βb, converts (3.1)
into:

e iχ = (2π)−6
∫
d3α

∫
d3β

∫
d3u

∫
d3v e i(α·u+β·v)−iα·β K

× e
i
2σ

I ·u · e i
2σ

II ·v (3.2)

Integration over
∫
d3α

∫
d3β is easily performed, yielding,

after another rescaling:

e iχ = (2π)−3
∫
d3u

∫
d3v e i(u·v) · e i

2σ
I ·u√

K

· e i
2σ

II ·v√
K (3.3)

Were the σI,II of (3.3) treated as ordinary numbers, the re-
maining integrals would immediately generate what might
be called the naive result:

e iχ0 = e−i (σI ·σII)K/4 ; (3.4)

however, a more careful, if elementary, evaluation of (3.4)
is needed, which yields:

e iχ0 = cos
(K

4

)
−

(K
4

)
sin

(K
4

)

− i

3
(σI · σII)

[
sin

(K
4

)
+

(K
4

)
cos

(K
4

)]
(3.5)

Since the product σI · σII has eigenvalues of +1 (triplet
state) and −3 (singlet state), the singlet eikonal function
is then given by:

e iχS =
(
1 + i

K

4

)
e iK/4 = ρ e i

(
K
4 −θ

)
(3.6)

where ρ =
[
1 + (K/4)2

]1/2 and θ = tan−1(K/4). Using
the same notation, the triplet eikonal may be written as:

e iχT =
ρ

3
e i

(
K
4 −θ

)
+

2ρ
3
e−i

(
K
4 −θ

)
(3.7)

Assuming the validity of the QAL, equations (3.6) and
(3.7), not the results following from (3.4), nor those quoted
in [3], are the correct expressions for these eikonals.

Generalizations from SU(2) to SU(3) are possible al-
though somewhat tedious; here, for any SU(N), a conve-
nient representation for needed exponentials can be writ-
ten in the form:

e iλ·u =
1
N

∑
n

[
1 + λa

∂rn
∂ua

]
e irn (3.8)

where the rn are the eigenvalues of the matrices λ ·u. For
SU(3), for example, one must solve the triple equations:

∑
n

rn=0,
∑
n

r2n = a (δab ua ub)

∑
n

r3n= b (dabc ua ub uc)

where a and b are real constants, for the three rn, which
is equivalent to finding the roots of a relevant cubic equa-
tion; for SU(2), one has, immediately : e

i
2σ·u = cos

(
u
2

)

+i σ·u
u sin

(
u
2

)
.

When the method is extended to closed quark loop
and gluon–gluon interactions, where an imaginary part
increasing with E develops in the quantity analogous to
the K of this computation, these quadratures will require
– as in [4] – an analytic continuation, which must be per-
formed in such a manner that unitarity is respected. Initial
application of the QAL method to closed quark loops sug-
gests that the simplifications noted above will also hold for
any loops containing gluons that couple directly (or indi-
rectly, through the medium of other closed loops) to the
scattering quarks. It may also be mentioned that a gener-
alization of the present QAL technique can be formulated
for wide angle, quark scattering at high energies, which
retains appropriate spin–dependence needed to generate
the observed spin–correlation ratios which have been ob-
tained in a growing number of experiments [10], and which
still demand a consistent theoretical explanation. Work is
presently underway on both of these applications of the
QAL.

If, by a careful estimate of corrections to the unjus-
tified interchange which produces the QAL, one were to
find that the QAL generates a reasonable approximation
even at finite energies, the method would then become
applicable to the calculation, or estimation, of all QCD
correlation functions, for a wide variety of processes.

4 Summary

As noted in Appendix B, when one explicitly constructs
the functions that display color dependence, e.g. αa(s),
one always finds that dependence entering into an inte-
gral of form p1µ

∫ +∞
−∞ dsαa(s) faµ(sp1). The simplest QAL

argument is then, that upon rescaling, this is identical to
p1µ/E

∫ +∞
−∞ ds̄ αa(s̄/E) faµ(s̄p1/E), and in the limit

E/m → ∞ can be rewritten as
(
p1µ/E

)
αa(0)

× ∫ +∞
−∞ ds̄ faµ(s̄p1/E), assuming that αa(s) may be treated

as a continuous function of s. Of course, this is mathe-
matically incorrect; but if the very large ln(E/m) terms
which are neglected by the QAL do self–cancel, then the
QAL may be used to bypass a huge amount of useless
calculation.

The corrected contiguity calculation, without the QAL
assumption, provides one example of just how this can
work. Here, all of the α, β generated leading log depen-
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dence sums up to a form which, when continued to ar-
bitrarily high ln(E/m), removes itself (in the sense of
lim (1 + x)−1 → 0 as x → ∞) from the problem. The
simple and succinct way of bypassing all the effort of that
example is to adopt the QAL. Physically, it is as if all
color fluctuations and exchanges of color coordinates be-
tween scattering quarks take place only in the very short
period about their point of closest approach, or equiva-
lently, at the proper time corresponding to that point of
closest approach.

We expect the QAL to have extensive applications to
the more interesting, gluon–interaction and closed quark
loop eikonal graphs, which are now under active consider-
ation.

Appendix A

We here briefly describe a variety of other approaches to
the QAL, which all appear to become equivalent in the
limit of ultra–high energy. It should first be noted that
the functional integrals over the αi and βj variables may
be performed exactly, with a result that (2.5) may be put
into the (asymmetric but convenient) form:

∏
i,j

(2π)−D
∫
dDui

∫
dDvj e

−iuivj · · · e iλI ·
∑

k
∆ikuk

· · · e iλII ·vj · · · (A.1)

where the dots in (A.1) indicates the exponential λI , λII
factors with all the differing values of s1i and s2j . In par-
ticular, the sum over the tk indices of each uk exponential
coefficient, for a particular value of s1i, may be written in
the continuum limit as:

i ∆s(p1 · p2)
∫ +∞

−∞
dt∆c(z − s1i p1 + tp2)ua(t)

= i∆s (p1 ·p2)
∫

d2k⊥
(2π)2

e ik⊥·b

×
∫

dk3

(2π)
e ik3z3

∫
dk0

(2π)
e−ik0z0 e−iEs1i(k3−k0)

µ2 + k2
⊥ + k2

3 − k2
0

×
∫ +∞

−∞
dt e−iEt(k3+k0)ua(t) (A.2)

Rescaling the last t–integrand of (A.2), by t̄ = E t, one
considers:

1
E

∫ +∞

−∞
dt̄ e−it̄ (k3+k0) ua(t̄/E) (A.3)

which, under the naive interchange of limits introduced
here, becomes (2π/E)δ (k3 + k0)ua(0), as E → ∞. Were
the ua(t) a smooth, analytic function of its argument, one
could argue that the first correction to this result would
involve an extra factor of E−1, and could therefore be
dropped. But, although written in continuous form, the
ua(t) represents a function which is at best piecewise con-
tinuous, and no statement can be made about its deriva-
tives. Yet, one has the intuitive feeling that – could the

entire functional integral be performed properly – the limit
of large E should involve only the variable ua(0); and it
is this intuition, aided by the relative simplicity of the
result, which makes the QAL so attractive. Combining
these last statements, the only, non trivial contribution to
the functional integral comes from those coordinates cor-
responding to zero proper–time arguments; and the result
may easily be transformed into that of the text, (3.3).

There is a second, independent method of arriving at
the QAL, which begins by the observation that the per-
turbative LL terms, as provided by the arguments of [2]
and [3], arise as the coefficients of multiple commutators:

[
λa1 ,

[
λa2 , · · ·

[
λan−1 , λan

]
· · ·

]]

describing the well–known fact that, e.g., the product of
two such exponential factors is not equal to the exponen-
tial of their sum:

e iλ·a e iλ·b 6= e iλ·(a+b)

But, if we believe the corrected contiguity result, in which
the LLE dependence vanishes as E → ∞, let us neglect
all such commutator dependence, and replace in (A.1):∏
i e

iλI ·
∑

k
∆ikuk by e

iλI ·
∑

i,k
∆ikuk or, in the continuum

limit, by:

e
ig2 (p1·p2)

∫ ∫ +∞
−∞ ds1 ds2∆c(z−s1p1+s2p2)u(s2)·λI

Integration over ds now generates a δ (k3 − k0), which
permits

∫
dk0 to be performed, and generates the simple

result exp
(
−KλIaua(t0)

)
, with t0 = (z3 − z0)/2E. It is

not even necessary to assume the E → ∞ limit here, for
the only non trivial contribution to (A.1) can come when
s1i and s2j are both equal to t0, and that contribution is
exactly the same as that of (3.3).

A third method of approach to the QAL utilises the
fall off (or rapidly oscillating) behavior of the propagator
∆c(z), which assuming spacelike dependence, for simplic-
ity, decreases roughly as exp

(
−µ(Z2)1/2

)
for large values

of Z2 = (z − s1p1 + s2p2)2. In our case, for s1,2 6= 0, this
means a propagator fall off roughly as exp

(−µE s1is2j),
where we have neglected other, less important terms
(which become important if one of the s variables is zero)
decreasing as exp

(
−µ(E s z3,0)1/2

)
. In terms of the orig-

inal s1i, s2j variables, the region of importance is within
the “star” formed by the hyperbolas |s1i s2j | < (µE)−2;
all other s1i, s2j will give a negligible contribution to the
product α(s1i)∆ij β(s2j).

It should be noted that arbitrarily large αi, βj values
are allowed, but then the entire interaction exponential
oscillates to zero. But the point of the exercise is that,
in the limit E → ∞, the “star” shrinks to the point
s1i ∼ s2j ∼ 0, so that, again, only these are the sig-
nificant values. The same type of analysis can be carried
out starting from (A.1), and leads to the same QAL result,
as above.
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Of course, as emphasized in the text, the really cru-
cial question of how to estimate corrections to the QAL
remains open; and it is only after this step has been per-
formed, that one may feel confident about this interchange
of limits.

Appendix B

To the best of our knowledge, a derivation of the exact,
eikonal amplitude, proceeding from the variation of cou-
plings g1,2 in the non Abelian case has not yet been pre-
sented; and that shall be the aim of this Appendix. Only
at the very end will we specialize to the simplest sub–set
of graphs used to define the QAL.

We begin, then, with an exact form of the 4–point, con-
figuration space, quark–quark scattering amplitude, ob-
tained from the exact generating function of (1.1):

M(x1, y1;x2, y2) = iN

∫
d[A] δ[n ·A] e− i

4

∫
F 2+L[A]

·GIc(x1, y1|g1A) ·GIIc (x2, y2|g2A) (B.1)

displaying the unrenormalized quark–gluon couplings g1,2;
here Fµν and L[A] depend on g, which value is subse-
quently approached by g1,2. We next calculate:

∂2M

∂g1∂g2
= −iN

∫
d[A] δ[n ·A] e− i

4

∫
F 2+L[A]

·
∫
d4z1G

I
c(x1, z1|g1A) γIµA

a
µ(z1)λ

I
aG

I
c(z1, y1|g1A) (B.2)

·
∫
d4z2G

II
c (x2, z2|g2A) γIIν Abν(z2)λ

II
b GIIc (z2, y2|g2A)

and follow this by mass shell amputation on all four quark
legs (but only on one leg for each, no recoil Green’s func-
tion !), generating for the Fourier transform of (B.2) the
quantity:

∂2T

∂g1∂g2
= iN

∫
d[A] δ[n ·A] e− i

4

∫
F 2+L[A]

·
∫
d4z1 e

iq1·z1
(
e
ig1

∫ +∞
0

ds p′
1·A(z1−sp′

1)λ
I
)

+

·
(
p1

m
·A(z1)λI

)(
e
ig1

∫ 0

−∞ds p1·A(z1−sp1)λI
)

+
(B.3)

·
∫
d4z2 e

iq2·z2
(
e
ig2

∫ +∞
0

ds p′
2·A(z2−sp′

2)λ
II

)
+

·
(
p2

m
·A(z2)λII

)(
e
ig2

∫ 0

−∞ds p2·A(z2−sp2)λII
)

+

where we have replaced the (B.2) factors γIµ, γ
II
ν by −ip1µ

m ,
−ip2ν

m in the small momentum transfer limit.
The exponential factors of (B.3) are those familiar

from abelian, eikonal models, except that here, because
of the non commuting λ matrices, ordered exponentials
(OEs) must be used. Each quark line OE of (B.3) may be

rewritten as in the text, so as to separate its A dependence
from the color matrices; for example:(

e
ig1

∫ +∞
0

ds p′
1·A(z1−sp′

1)λ
I
)

+
λIa

×
(
e
ig1

∫ 0

−∞ds p1·A(z1−sp1)λI
)

+

= N ′
∫
d [α]

∫
d [u] e

i
∫ ∞

−∞dsαa(s)ua(s)
(
e
i
∫ ∞

0
ds λI ·u(s)

)
+

×λIa
(
e
i
∫ 0

−∞ds λI ·u(s)
)

+
(B.4)

·e−ig1
∫ +∞

−∞ dsαa′ (s)

[
θ(s) p′

1µA
a′
µ (z1−sp′

1)+θ(−s) p1µA
a′
µ (z1−sp1)

]

where N ′ is a normalization constant chosen so that func-
tional integration over the αa′(s) produces exactly the
delta functional:

δ
[
ua′(s) − g1

(
θ(s) p′

1µA
a′
µ (z1 − sp′

1)

+θ(−s) p1µA
a′
µ (z1 − sp1)

)]

and the subsequent
∫
d [u] reproduces exactly the LHS of

(B.1). We shall adopt a similar representation for the other
quark’s OE factors, with β(s), v(s) replacing α(s) and
u(s).

Another way of writing the A dependence of RHS of
(B.4) is:

exp
[
−ig1

∫
d4z Ja1µ(z)A

a
µ(z)

]

where Ja1µ(z) represents the color current of that quark:

Ja1µ(z) =
∫ +∞

−∞
dsαa(s)

[
p′
1µδ

(4)(z − z1 + sp′
1) θ(s)

+p1µδ
(4)(z − z1 + sp1) θ(−s)

]
(B.5)

and in the customary, small t, eikonal amplitude, we ne-
glect in (B.5) the momentum transfer q1, so that:

Ja1µ(z) = p1µ

∫ +∞

−∞
dsαa(s) δ(4)(z − z1 + sp1) (B.6)

With these replacements, (B.3) becomes:

∂2T

∂g1∂g2
=
iN

m2

∫
d[A] δ[n ·A] e− i

4

∫
F 2+L[A]

·
∫
d4z1 e

iq1·z1
∫
d4z2 e

iq2·z2

·N ′2
∫
d[α]

∫
d[u]

∫
d[β]

∫
d[v] e i

∫
[α·u+β·v]

·(p1 ·Aa(z1)
)(
p2 ·Ab(z2)

)
e i

∫
[g1J1+g2J2]·A (B.7)

·
(
e
i
∫ ∞

0
ds λI ·u

)
+
λIa

(
e
i
∫ 0

−∞ds λI ·u
)

+

·
(
e
i
∫ ∞

0
ds λII ·v

)
+
λIIb

(
e
i
∫ 0

−∞ds λII ·v
)

+
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The A factors of (B.7) may be written more compactly as:
(

1
ig1

p1µ
δ

δJa1µ(z1)

)

×
(

1
ig2

p2ν
δ

δJb2ν(z2)

)
e i

∫
[g1J1+g2J2]·A

and the λI,II dependence as:

1
i

δ

δua(0)
1
i

δ

δvb(0)

(
e
i
∫ +∞

−∞ λI ·u
)

+
·
(
e
i
∫ +∞

−∞ λII ·v
)

+

Further, an integration by parts on the ua(0), vb(0) vari-
ables then converts the functional derivatives 1

i
δ

δua(0)

× 1
i

δ
δvb(0)

into multiplicative factors of αa(0)βb(0), so that
we obtain the compact form:

∂2T

∂g1∂g2
=

∫
d4z1 e

iq1·z1

·
∫
d4z2 e

iq2·z2
(
αa(0)

p1µ

g1

δ

δJa1µ(z1)

)

·
(
βb(0)

p2ν

g2

δ

δJb2ν(z2)

)
R

[
g1J1, g2J2

]
(B.8)

where:

R = − iN

m2

∫
d[A] δ[n ·A] e− i

4

∫
F 2+L[A]

·N ′2
∫
d[α]

∫
d[u]

∫
d[β]

∫
d[v] e i

∫
[α·u+β·v] (B.9)

·
(
e i

∫
λI ·u

)
+

(
e i

∫
λII ·v

)
+
e i

∫
[g1J1+g2J2]·A

It is now convenient to make use of the simple and obvious
functional relations:

g1
∂R

∂g1
=

∫
d4z Ja1µ(z)

δ

δJa1µ(z)
R (B.10)

and:

g2
∂R

∂g2
=

∫
d4w Jb2ν(w)

δ

δJb2ν(w)
R (B.11)

Substituting the definition of J1µ(z) into (B.10), the latter
becomes:

g1
∂R

∂g1
= p1µ

∫ +∞

−∞
dsαa(s)

δR

δJa1µ(z1 − sp1)
(B.12)

and upon operation on both sides of (B.10) by
∫
d4z1 e

iq1·z1 ,
one obtains:∫

d4z1 e
iq1·z1g1

∂R

∂g1
(B.13)

=
∫ +∞

−∞
dsαa(s)

∫
d4z1 e

iq1·z1 p1µ
δR

δJa1µ(z1 − sp1)

On the RHS of (B.13) make the variable change z1−sp1 =
z′
1, so that:

∫
d4z1 e

iq1·z1 ∂R
∂g1

=
p1µ

g1

∫ +∞

−∞
dsαa(s) e isq1·p1

·
∫
d4z′

1 e
iq1·z′

1
δR

δJa1µ(z
′
1)

(B.14)

where we henceforth drop the prime of z′
1. A similar re-

lation must hold for variations of g2 and J2; or, for both
together:

∫
d4z1 e

iq1·z1
∫
d4z2 e

iq2·z2 ∂2R

∂g1∂g2

=
p1µ

g1

p2ν

g2

∫ +∞

−∞
ds1 αa(s1) e is1q1·p1

·
∫ +∞

−∞
ds2 βb(s2) e is2q2·p2 (B.15)

·
∫
d4z1 e

iq1·z1
∫
d4z2 e

iq2·z2 δ2R

δJa1µ(z1) δJ
b
2ν(z2)

The RHS of (B.15) is almost the same combination as that
which appears on the RHS of (B.8), except for the factors:

∫ ∫ +∞

−∞
ds1 ds2 αa(s1)βb(s2) e i(s1q1·p1+s2q2·p2)

of (B.15), which differ from the αa(0)βb(0) of (B.8). Let
us therefore multiply both sides of (B.8) by (2π)2δ(q1 ·
p1) δ(q2 · p2), and note that the resulting RHS:

p1µ

g1

p2ν

g2
αa(0)βb(0)

∫ +∞

−∞
ds1 e

is1q1·p1
∫ +∞

−∞
ds2 e

is2q2·p2

∫
d4z1 e

iq1·z1
∫
d4z2 e

iq2·z2 δ2R

δJa1µ(z1) δJ
b
2ν(z2)

(B.16)

closely resembles the RHS of (B.15) except that the lat-
ter’s αa(s1)βb(s2) are replaced by αa(0)βb(0). One must
also ask if it is permitted to multiply T by δ(q1 · p1) δ(q2 ·
p2), to which a positive response will be demonstrated be-
low. We now argue that in the limit of sufficiently large
E/m, the αa(s1)βb(s2) factors of (B.15) may be replaced
by αa(0)βb(0); this argument, which is at the heart of the
QAL, is made in several different contexts in Appendix A,
and we use its simplest form. In general, αa(s) dependence
is always displayed in the form:

p1µ

∫ +∞

−∞
dsαa(s) faµ(sp1)

One now rescales the dummy s variable to s̄ = Es, so that
this combination becomes:

p1µ

E

∫ +∞

−∞
ds̄ αa(s̄/E) faµ(s̄p1/E)

where, in the CM, p1µ = (0, 0, E, iE) in the large E/m
limit (and, similarly, p2ν = (0, 0,−E, iE)). If we treat
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αa(s) as a continuous function of s, then in the limit
E/m → ∞, one would expect this combination to be
equivalent to:

p1µ

E
αa(0)

∫ +∞

−∞
ds̄ faµ(s̄p1/E)

or, upon a rescaling, to be p1µ αa(0)
∫ +∞

−∞ ds faµ(sp1). We
argue in the text and in Appendix A that, physically, this
limit corresponds to color transfers ocurring at very small
proper times, which, by a judicious choice of CM coordi-
nate system, corresponds to a small relative distance of
the scattering quarks. This is the QAL, and its adoption
here means that the RHS of (B.15) is equivalent to the
RHS of (B.8) multiplied by (2π)2 δ(q1 · p1) δ(q2 · p2). The
latter combination must then be equivalent to the LHS of
(B.15), i.e.:

(2π)2 δ(q1 · p1) δ(q2 · p2)
∂2T

∂g1∂g2

=
∫
d4z1 e

iq1·z1
∫
d4z2 e

iq2·z2 ∂2R

∂g1∂g2

After integration over the couplings,
∫ g
0 dg1

∫ g
0 dg2, one has:

(2π)2 δ(q1 · p1) δ(q2 · p2) T

=
iN

m2

∫
d[A] δ[n ·A] e− i

4

∫
F 2+L[A]

·
∫
d4z1 e

iq1·z1
∫
d4z2 e

iq2·z2

·N ′2
∫
d[α]

∫
d[u]

∫
d[β]

∫
d[v] e i

∫
[α·u+β·v]

·
(
e i

∫
λI ·u

)
+

(
e i

∫
λII ·v

)
+

[
1 − e i

∫
g[J1+J2]·A

]
(B.17)

where the additive constant of integration (the “1”) inside
the bracket of (B.17) insures that T vanishes if g → 0.

The RHS of (B.17) may be rewritten as:

i

m2

∫
d4z1 e

iq1·z1
∫
d4z2 e

iq2·z2
[
1 − e iχ

]
(B.18)

where:

e iχ = N

∫
d[A] δ[n ·A] e− i

4

∫
F 2+L[A]N ′2

·
∫
d[α]

∫
d[u]

∫
d[β]

∫
d[v] e i

∫
[α·u+β·v]

·
(
e i

∫
λI ·u

)
+

(
e i

∫
λII ·v

)
+
e ig

∫
[J1+J2]·A (B.19)

and where the coefficient of the integration constant is ex-
actly unity, as explained in the discussion of normalization
following (B.32). Note that if the QAL had not been made,
the result of (B.17) would not take the form of an eikonal
representation at this early stage; rather, one would have
to postpone integration over the couplings until after the

gluon fluctuations
∫
d[A] are performed; and the result

need not, in general, take the expected, eikonal form.
We next turn to the appropriateness of the multiplica-

tion of T by δ(q1 · p1) δ(q2 · p2); or, equivalently, to ask if
T may be defined with kinematic values of its variables
so that q1 · p1 = q2 · p2 = 0. Let us imagine a con-
tinuation of the quark masses m1,2 and m′

1,2 inside T ,
where mi and m′

i represent initial and final masses, con-
tinued so that mi 6= m′

i. Specifically, for q1⊥ 6= 0 in the
CM, we define q1,3 = (q1⊥)2/2E (the value this quantity
takes after the mass continuation is removed), and require
q1,0 = (m1

2 +m2
2 −m′

1
2 −m′

2
2)/2E (which is a valid re-

lation, independent of the mass values); and we then con-
tinue the masses so that m1

2+m2
2−m′

1
2−m′

2
2 = (q1⊥)2.

In this way, q1,3 = q1,0, so that q1 · p1 = 0. Similar defi-
nitions may be made for q2,3 = −(q2⊥)2/2E, and q2,0 =
(m1

2 +m2
2 −m′

1
2 −m′

2
2)/2E, assuming that q1 +q2 = 0;

and with this choice of parameters, q2 · p2 = 0. Here,
q1,0 + q2,0 → 0 only as the masses return to their nor-
mal values; but in the limit of very large E, q1,0 and q2,0
both vanish, as does their sum.

Overall 4 momentum conservation is achieved by trans-
lationnal invariance, which requires that χ(z1,2) = χ(z),
with z = z1 − z2; and hence the z1,2 integrations can be
rewritten as:

(2π)4 δ(4)(q1 + q2)
∫
d4z e iq1·z

[
1 − e iχ(z)

]

= (2π)4 δ(4)(q1 + q2)
∫
dz0

∫
dz3 e

iq1,3·z3−iq1,0·z0

·
∫
d2b e iq1,⊥·b

[
1 − e iχ(z)

]
(B.20)

Further, all the z dependence of χ enters in the combina-
tion z − s1p1 + s2p2, where s1,2 are integration variables
which may be redefined so as to remove from this combi-
nation all explicit z3,0 dependence (and whose new limits
of integration can be extended to ±∞ as E → ∞); and in
this way, χ can depend only on b = z1 − z2, so that (B.20)
generates:

(2π)4 δ(4)(q1 + q2) (2π)2 δ(q3) δ(q0)
∫
d2b e iq1·b

[
1 − e iχ(b)

]

The factor standing to the left of the
∫
d2b can be cast into

the form:

(2π)4 δ(4)(q1 + q2) (2E)2 δ(q1 · p1) δ(q2 · p2)

so that common factors of (2π)2 δ(q1 · p1) δ(q2 · p2) may
be cancelled from both sides of (B.17), or of (B.18), and
the quark masses continued back to their proper values.
Suppressing the explicit factor (2π)4 δ(4)(q1+q2) of T , one
finds from (B.18) the standard eikonal representation:

T =
is

2m2

∫
d2b e iq·b

[
1 − e iχ

]
, s = 4E2 (B.21)

Finally, it is appropriate to rewrite the gluon fluctuation∫
d[A] in a way which exhibits the effects resulting from



708 H.M. Fried et al.: The quasi–abelian limit

our choice of axial gauge. For this, it is convenient to first
write:

e− i
4

∫
F 2

= e− i
4

∫
f2 · e− i

4

∫
(F 2−f2) (B.22)

and, firstly, to concentrate on the first RHS factor of
(B.22). Here, faµν = ∂µA

a
ν − ∂νA

a
µ, resembling QED field

strengths, with a color index. Rewriting this factor in the
form:

e− i
2

∫
Aa

µ(−∂2)Aa
µ · e+ i

2

∫
(∂µA

a
µ)2 , (B.23)

the second term of (B.23) may be replaced by:

Nψ

∫
d[ψ] e− i

2

∫
ψ2

a+i
∫
Aa

µ∂µψa , (B.24)

where Nψ is an integration constant given by N−1
ψ =∫

d[ψ] e− i
2

∫
ψ2

a . Substitution into (B.19) then produces:

e iχ = N ′2
∫
d[α]

∫
d[u]

∫
d[β]

∫
d[v] e i

∫
[α·u+β·v]

·
(
e i

∫
λI ·u

)
+

(
e i

∫
λII ·v

)
+

·N Nψ

∫
d[ψ] e− i

2

∫
ψ2

Nθ

∫
d[θ]

·
∫
d[A] e− i

2

∫
A(−∂2)A e i

∫
J a

µA
a
µ F [A] (B.25)

where J a
µ = g

(
Ja1µ + Ja2µ

)
+ ∂µψa + nµθa, F [A] =

e L[A]− i
4

∫
(F 2−f2) and where we have used the represen-

tation δ[n ·A] = Nθ
∫
d[θ] e i

∫
nµθaA

a
µ with Nθ an appropri-

ate normalization constant. Finally, it will be convenient
to introduce a functional Fourier representation F̃ [φ] of
F [A]:

F [A] =
∫
d[φ] F̃ [φ] e i

∫
φa

µA
a
µ

so as to group all the A dependence of (B.25) into the
gaussian form:

N Nψ Nθ

∫
d[A] e− i

2

∫
A(−∂2)A e i

∫
(φ+J )A

= N N−1
A Nψ Nθ exp

[ i
2

∫
(φ+ J )Dc (φ+ J )

]
(B.26)

where N−1
A =

∫
d[A] e− i

2

∫
A(−∂2)A, and where D̃ab

c,µν(k) =
δµνδab/k

2 represents the causal, momentum space inverse
of (−∂2).

In the exponential factor of (B.26), we isolate the ex-
plicit (nθ + ∂ψ) dependence, replacing the former by:

exp
[ i
2

∫
(nθ + ∂ψ)Dc (nθ + ∂ψ)

]

· exp
[
i

∫
(φ+ J)Dc (nθ + ∂ψ)

]

· exp
[ i
2

∫
(φ+ J)Dc (φ+ J)

]
(B.27)

where J = g (J1 +J2). The quadratic ψ dependence in the
exponential of (B.27), i2

∫
∂ψ ·Dc ·∂ψ = i

2

∫
ψ

[
(−∂2)Dc

]
ψ

= i
2

∫
ψ2, exactly cancels the exp[− i

2

∫
ψ2] factor of (B.25),

so that integration over ψ then produces:

N−1
θ

det[n · ∂Dc]
δ
[
θ + (n · ∂Dc)−1(∂Dc)(φ+ J)

]
(B.28)

The delta functional of (B.28) can now be used to evaluate
the integrals over the remaining θ dependence of (B.27),
so that the second line of (B.25) becomes:

NNψN
−1
A

det[n · ∂Dc]
· exp

[ i
2

∫
(φ+ J)Dag

c (φ+ J)
]

(B.29)

where
(
D̃ag
c

)ab
µν

= δab

k2

[
δµν − (nµkν+nνkµ)

k·n + n2kµkν

(k·n)2

]
is the

familiar, axial gauge propagator.
If one takes into account the fact that the functional

integral:
∫
d[φ] F̃ [φ] e

i
2

∫
(φ+J)Dag

c (φ+J) (B.30)

may be rewritten in terms of the linkage operator:

eDag ≡ exp
[
− i

2

∫
δ

δA
Dag

δ

δA

]

as:

eDag F [A] e i
∫
A·J

∣∣∣
A→0

= e
i
2

∫
J·Dag

c ·J · eDag F [A+
∫
Dag
c J ]

∣∣∣
A→0

(B.31)

our answer for (B.25) can be presented as:

e iχ = N ′2
∫
d[α]

∫
d[u]

∫
d[β]

∫
d[v] e i

∫
[α·u+β·v]

·
(
e i

∫
λI ·u

)
+

(
e i

∫
λII ·v

)
+

·e i
2

∫
J Dag

c J · eDag F [A+
∫
Dag
c J ]

∣∣∣
A→0

·
(
eDag F [A]

∣∣∣
A→0

)−1

(B.32)

upon using the overall normalization condition Z{0, 0, 0}
= 1, and the observation that the first line of (B.32) by
itself – that is, without the (α, β) dependence in the J
of (B.32)’s second line – is exactly unity. One sees from
(B.32) that all disconnected graphs are automatically re-
moved, with the eikonal function given by the sum of
all connected, t channel gluonic exchanges between the
scattering quarks. If one neglects interactions between ex-
changed gluons, as well as those of closed quark loops,
F → 1, and we are in the realm of the simplest graphs of
gluons exchanged between quarks, which we here use to
define and illustrate the QAL.
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The only other approximation needed is to replace the
exponential factor of (B.32), i

2

∫
J Dag

c J by
ig2

∫
J1D

ag
c J2, since we have already agreed to drop all

self linkage terms. Then, since the currents J1µ and J2ν
are proportional to p1µ and p2ν , respectively, and since the
QAL will subsequently replace the αa(s) and βb(s) factors
of J1 and J2 by αa(0) and βb(0), the

∫
ds1 and

∫
ds2 of

this exponential term will generate (using a Fourier repre-
sentation of Dc) factors of δ(k · p1) and δ(k · p2), the only
part of (Dag

c )abµν which remains is the “Feynman gauge”
portion, (D̃ag

c )abµν → (D̃c)abµν = δabδµν/k
2; and hence all

the nµ dependence disappears from this scattering ampli-
tude, which is therefore independent of the gauge trans-
formations available within the context of a general axial
gauge. In this way, and for this simplest set of graphs, the
QAL generates a result that is independent of gauge.

Finally, at this point we introduce a “gluon mass” into
the propagator :

(D̃c)abµν → (∆̃c)abµν = δab δµν/(k2 + µ2)

to represent in an ad hoc way any mass like structures,
resulting from omitted radiative corrections to the vir-
tual gluons exchanged between the scattering quarks. In
a practical sense, we are suppressing the possibility of any
IR singularities, a question that has already been exten-
sively discussed in the first two papers of [6], and the ref-
erences quoted there; and this is done because our even-
tual interest – although not realized in this paper – is
to extract and identify any and all generalized, multipe-
ripheral structure of the eikonal amplitude. In brief, we
subsequently hope to learn just how close one can come
to a “realistic Pomeron”; and, for this, IR singularities do
not appear to be relevant.
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